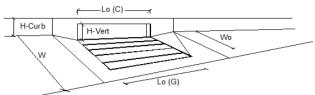

INLET CALCULATIONS

DESIGN PEAK FLOW FOR ONE-HALF OF STREET OR GRASS-LINED CHANNEL BY THE RATIONAL METHOD 13-034.01 US 550 South Connection SEIS-Alternative Analysis Basin AM-6, Inlet 97 Inlet 1035R Project: Inlet ID: OVERLAND SIDE OVERLAND FLOW FLOW Show Details GUTTER FLOW-GUTTER PLUS CARRYOVER FLOW -ROADWAY CENTERLINE Design Flow: ONLY if already determined through other methods: Minor Storm Major Storm 0.46 0.81 ILL IN THIS SECTION (local peak flow for 1/2 of street OR grass-lined channel): * If you enter values in Row 14, skip the rest of this sheet and proceed to sh Geographic Information: (Enter data in the blue cells): ILL IN THE SECTIONS Subcatchment Area = BELOW. Acres Percent Imperviousness = NRCS Soil Type = A, B, C, or D Site Type: Flows Developed For: Street Inlets Slope (ft/ft) Length (ft) Site is Non-Urban Orea Inlets in a Median Overland Flow : Channel Flow = Rainfall Information: Intensity I (inch/hr) = $C_1 * P_1 / (C_2 + T_c)$ Minor Storm Maior Storm Design Storm Return Period, T_r = vears Return Period One-Hour Precipitation, P₁ = inches C₁ = C₂ = User-Defined Storm Runoff Coefficient (leave this blank to accept a calculated value), C = User-Defined 5-yr. Runoff Coefficient (leave this blank to accept a calculated value), C_5 = Bypass (Carry-Over) Flow from upstream Subcatchments, Q_b = Total Design Peak Flow, Q = 0.46 1.11 cfs

(Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)

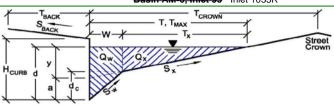
Project: Inlet ID: 13-034.01 US 550 South Connection SEIS Alternative Analysis


Basin AM-6, Inlet 97 Inlet 1035R

Gutter Geometry (Enter data in the blue cells) Maximum Allowable Width for Spread Behind Curb $\mathsf{T}_{\mathsf{BACK}}$ 0.5 S_{BACK} = Side Slope Behind Curb (leave blank for no conveyance credit behind curb) ft/ft Manning's Roughness Behind Curb (typically between 0.012 and 0.020) 0.013 n_{BACK} = Height of Curb at Gutter Flow Line $H_{CURB} =$ 24.00 inches Distance from Curb Face to Street Crown 42.0 Gutter Width W = 8.00 S_x = Street Transverse Slope 0.014 ft/ft Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 ft/ft) S_W = 0.014 ft/ft Street Longitudinal Slope - Enter 0 for sump condition S_o = 0.020 ft/ft Manning's Roughness for Street Section (typically between 0.012 and 0.020) 0.013 n_{STREET} = Minor Storm Major Storm Max. Allowable Spread for Minor & Major Storm 20.0 8.0 Max. Allowable Depth at Gutter Flowline for Minor & Major Storm inches 6.0 Allow Flow Depth at Street Crown (leave blank for no) check = yes MINOR STORM Allowable Capacity is based on Spread Criterion Minor Storm Major Storm MAJOR STORM Allowable Capacity is based on Spread Criterion 1.23 14.2 Minor storm max. allowable capacity GOOD - greater than flow given on sheet 'Q-Peak' Major storm max. allowable capacity GOOD - greater than flow given on sheet 'Q-Peak'

13-034.01 US 550 South Connection SEIS Alternative Analysis

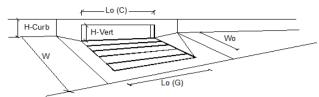
Basin AM-6, Inlet 97 Inlet 1035R Project: Inlet ID:


Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =	Directional C	ast Vane Grate	
Local Depression (additional to continuous gutter depression 'a' from 'Q-Allow')	a _{LOCAL} =	0.0	0.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	7
Length of a Single Unit Inlet (Grate or Curb Opening)	L _o =	4.00	4.00	ft
Width of a Unit Grate (cannot be greater than W from Q-Allow)	W _o =	2.00	2.00	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	C _f -G =	0.50	0.50	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	C_f - $C =$	N/A	N/A	
Street Hydraulics: OK - Q < maximum allowable from sheet 'Q-Allow'		MINOR	MAJOR	
Total Inlet Interception Capacity	Q =	0.35	0.54	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	Q _b =	0.11	0.57	cfs
Capture Percentage = Q _a /Q _o =	C% =	76	49	%

DESIGN PEAK FLOW FOR ONE-HALF OF STREET OR GRASS-LINED CHANNEL BY THE RATIONAL METHOD 13-034.01 US 550 South Connection SEIS Alternative Analysis Basin AM-6, Inlet 95 Inlet 1033R Project: Inlet ID: OVERLAND SIDE OVERLAND FLOW FLOW Show Details GUTTER FLOW-GUTTER PLUS CARRYOVER FLOW -ROADWAY CENTERLINE Design Flow: ONLY if already determined through other methods: Minor Storm Major Storm 0.55 0.97 ILL IN THIS SECTION (local peak flow for 1/2 of street OR grass-lined channel): * If you enter values in Row 14, skip the rest of this sheet and proceed to sh Geographic Information: (Enter data in the blue cells): ILL IN THE SECTIONS Subcatchment Area = BELOW. Acres Percent Imperviousness = NRCS Soil Type = A, B, C, or D Site Type: Flows Developed For: Street Inlets Slope (ft/ft) Length (ft) Site is Non-Urban Orea Inlets in a Median Overland Flow : Channel Flow = Rainfall Information: Intensity I (inch/hr) = $C_1 * P_1 / (C_2 + T_c)$ Minor Storm Maior Storm Design Storm Return Period, T_r = vears Return Period One-Hour Precipitation, P₁ = inches C₁ = C₂ = User-Defined Storm Runoff Coefficient (leave this blank to accept a calculated value), C = User-Defined 5-yr. Runoff Coefficient (leave this blank to accept a calculated value), C_5 = Bypass (Carry-Over) Flow from upstream Subcatchments, Q_b = Total Design Peak Flow, Q = 0.55 1.97 cfs

(Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)

13-034.01 US 550 South Connection SEIS Alternative Analysis


Basin AM-6, Inlet 95 Inlet 1033R Project: Inlet ID:

Gutter Geometry (Enter data in the blue cells)				
Maximum Allowable Width for Spread Behind Curb	T _{BACK} =	0.5	ft	
Side Slope Behind Curb (leave blank for no conveyance credit behind curb)	S _{BACK} =		ft/ft	
Manning's Roughness Behind Curb (typically between 0.012 and 0.020)	n _{BACK} =	0.013	1	
Height of Curb at Gutter Flow Line	H _{CURB} =	6.00	inches	
Distance from Curb Face to Street Crown	T _{CROWN} =	42.0	ft	
Gutter Width	W =	8.00	ft	
Street Transverse Slope	S _X =	0.032	ft/ft	
Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 ft/ft)	S _W =	0.032	ft/ft	
Street Longitudinal Slope - Enter 0 for sump condition	S _o =	0.029	ft/ft	
Manning's Roughness for Street Section (typically between 0.012 and 0.020)	n _{STREET} =	0.013	1	
	_	Minor Storm	Major Storr	n
Max. Allowable Spread for Minor & Major Storm	$T_{MAX} =$	8.0	20.0	ft
Max. Allowable Depth at Gutter Flowline for Minor & Major Storm	$d_{MAX} =$	6.0	6.0	inches
Allow Flow Depth at Street Crown (leave blank for no)	•			check = yes
MINOR STORM Allowable Capacity is based on Spread Criterion		Minor Storm	Major Storr	n
MAJOR STORM Allowable Capacity is based on Depth Criterion	Q _{allow} =	6.00	27.8	cfs
Minor storm max. allowable capacity GOOD - greater than flow given on shee Major storm max. allowable capacity GOOD - greater than flow given on shee	et 'Q-Peak'			_

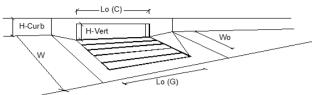
13-034.01 US 550 South Connection SEIS Alternative Analysis

Basin AM-6, Inlet 95 Inlet 1033R Project: Inlet ID:

Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =	Directional Ca	Directional Cast Vane Grate	
Local Depression (additional to continuous gutter depression 'a' from 'Q-Allow')	a _{LOCAL} =	0.0	0.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	T
Length of a Single Unit Inlet (Grate or Curb Opening)	L _o =	4.00	4.00	ft
Width of a Unit Grate (cannot be greater than W from Q-Allow)	W _o =	2.00	2.00	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	C _f -G =	0.50	0.50	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	C_{f} - $C =$	N/A	N/A	
Street Hydraulics: OK - Q < maximum allowable from sheet 'Q-Allow'		MINOR	MAJOR	
Total Inlet Interception Capacity	Q =	-0.33	1.67	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	Q _b =	0.88	0.30	cfs
Capture Percentage = Q _a /Q _o =	C% =	-59	85	%

DESIGN PEAK FLOW FOR ONE-HALF OF STREET OR GRASS-LINED CHANNEL BY THE RATIONAL METHOD 13-034.01 US 550 South Connection SEIS Alternative Analysis Basin AM-7, Inlet 88 & 86 Inlet 1027L & 1029LA Project: Inlet ID: OVERLAND SIDE OVERLAND FLOW FLOW Show Details GUTTER FLOW-GUTTER PLUS CARRYOVER FLOW -ROADWAY CENTERLINE Design Flow: ONLY if already determined through other methods: Minor Storm Major Storm 0.73 1.29 *Q_{Kn} ILL IN THIS SECTION (local peak flow for 1/2 of street OR grass-lined channel): * If you enter values in Row 14, skip the rest of this sheet and proceed to she Geographic Information: (Enter data in the blue cells): ILL IN THE SECTIONS Subcatchment Area = BELOW. Acres Percent Imperviousness = NRCS Soil Type = A, B, C, or D Site Type: Flows Developed For: Street Inlets Slope (ft/ft) Length (ft) Site is Non-Urban Orea Inlets in a Median Overland Flow : Channel Flow = Rainfall Information: Intensity I (inch/hr) = $C_1 * P_1 / (C_2 + T_c)$ Minor Storm Maior Storm Design Storm Return Period, T_r = vears Return Period One-Hour Precipitation, P₁ = inches C₁ = C₂ = User-Defined Storm Runoff Coefficient (leave this blank to accept a calculated value), C = User-Defined 5-yr. Runoff Coefficient (leave this blank to accept a calculated value), C_5 = Bypass (Carry-Over) Flow from upstream Subcatchments, Q_b = Total Design Peak Flow, Q = 0.73 1.29 cfs

APPENDIX B Page 74 B21


ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor & Major Storm) (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread) 13-034.01 US 550 South Connection SEIS Alternative Analysis Project: Basin AM-7, Inlet 88 & 86 Inlet 1027L & 1029LA Inlet ID: Street Gutter Geometry (Enter data in the blue cells) Maximum Allowable Width for Spread Behind Curb $\mathsf{T}_{\mathsf{BACK}}$ 0.5 Side Slope Behind Curb (leave blank for no conveyance credit behind curb) S_{BACK} = ft/ft Manning's Roughness Behind Curb (typically between 0.012 and 0.020) 0.013 n_{BACK} = Height of Curb at Gutter Flow Line $H_{CURB} =$ 24.00 inches Distance from Curb Face to Street Crown 42.0 Gutter Width W = 8.00 S_x = Street Transverse Slope 0.032 ft/ft Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 ft/ft) S_W = 0.032 ft/ft S_o = Street Longitudinal Slope - Enter 0 for sump condition 0.011 ft/ft Manning's Roughness for Street Section (typically between 0.012 and 0.020) 0.013 n_{STREET} = Minor Storm Major Storm Max. Allowable Spread for Minor & Major Storm 20.0 8.0 Max. Allowable Depth at Gutter Flowline for Minor & Major Storm inches 6.0 Allow Flow Depth at Street Crown (leave blank for no) check = yes MINOR STORM Allowable Capacity is based on Spread Criterion Minor Storm Major Storm MAJOR STORM Allowable Capacity is based on Spread Criterion 3.55 40.9 Minor storm max. allowable capacity GOOD - greater than flow given on sheet 'Q-Peak' Major storm max. allowable capacity GOOD - greater than flow given on sheet 'Q-Peak'

APPENDIX B Page 75 B22

Project: Inlet ID:

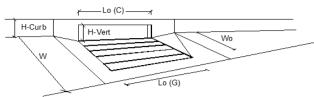
13-034.01 US 550 South Connection SEIS Alternative Analysis

Basin AM-7, Inlet 88 & 86 Inlet 1027L & 1029LA

Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =	Directional C	ast Vane Grate	
Local Depression (additional to continuous gutter depression 'a' from 'Q-Allow')	a _{LOCAL} =	0.0	0.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	T
Length of a Single Unit Inlet (Grate or Curb Opening)	L _o =	4.00	4.00	ft
Width of a Unit Grate (cannot be greater than W from Q-Allow)	W _o =	2.00	2.00	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	C _f -G =	0.50	0.50	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	C_{f} - $C =$	N/A	N/A	
Street Hydraulics: OK - Q < maximum allowable from sheet 'Q-Allow'		MINOR	MAJOR	
Total Inlet Interception Capacity	Q =	0.73	1.02	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	Q _b =	0.00	0.27	cfs
Capture Percentage = Q _a /Q _o =	C% =	100	79	%

APPENDIX B Page 76 B23

DESIGN PEAK FLOW FOR ONE-HALF OF STREET OR GRASS-LINED CHANNEL BY THE RATIONAL METHOD 13-034.01 US 550 South Connection SEIS Alternative Analysis Project: Inlet ID: Basin AM-10, Inlet 83 Inlet 1021L OVERLAND SIDE OVERLAND FLOW FLOW Show Details GUTTER FLOW-GUTTER PLUS CARRYOVER FLOW -ROADWAY CENTERLINE Design Flow: ONLY if already determined through other methods: Minor Storm Major Storm 0.53 0.94 ILL IN THIS SECTION (local peak flow for 1/2 of street OR grass-lined channel): * If you enter values in Row 14, skip the rest of this sheet and proceed to sh Geographic Information: (Enter data in the blue cells): ILL IN THE SECTIONS Subcatchment Area = BELOW. Acres Percent Imperviousness = NRCS Soil Type = A, B, C, or D Site Type: Flows Developed For: Street Inlets Slope (ft/ft) Length (ft) Site is Non-Urban Orea Inlets in a Median Overland Flow : Channel Flow = Rainfall Information: Intensity I (inch/hr) = $C_1 * P_1 / (C_2 + T_c)$ Minor Storm Maior Storm Design Storm Return Period, T_r = vears Return Period One-Hour Precipitation, P₁ = inches C₁ = C₂ = User-Defined Storm Runoff Coefficient (leave this blank to accept a calculated value), C = User-Defined 5-yr. Runoff Coefficient (leave this blank to accept a calculated value), C_5 = Bypass (Carry-Over) Flow from upstream Subcatchments, Q_b = Total Design Peak Flow, Q = 0.53 0.94 cfs

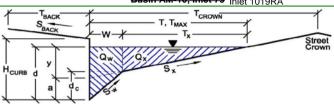

(Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)

Project: 13-034.01 US 550 South Connection SEIS Alternative Analysis
Inlet ID: Basin AM-10, Inlet 83 Inlet 1021L

Torown

Gutter Geometry (Enter data in the blue cells) Maximum Allowable Width for Spread Behind Curb $\mathsf{T}_{\mathsf{BACK}}$ 0.5 S_{BACK} = Side Slope Behind Curb (leave blank for no conveyance credit behind curb) ft/ft Manning's Roughness Behind Curb (typically between 0.012 and 0.020) 0.013 n_{BACK} = Height of Curb at Gutter Flow Line $H_{CURB} =$ 24.00 inches Distance from Curb Face to Street Crown 42.0 Gutter Width W = 8.00 S_x = Street Transverse Slope 0.032 ft/ft Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 ft/ft) S_W = 0.032 ft/ft Street Longitudinal Slope - Enter 0 for sump condition S_o = 0.008 ft/ft Manning's Roughness for Street Section (typically between 0.012 and 0.020) 0.013 n_{STREET} = Minor Storm Major Storm Max. Allowable Spread for Minor & Major Storm 20.0 8.0 Max. Allowable Depth at Gutter Flowline for Minor & Major Storm inches 6.0 Allow Flow Depth at Street Crown (leave blank for no) check = yes MINOR STORM Allowable Capacity is based on Spread Criterion Minor Storm Major Storm MAJOR STORM Allowable Capacity is based on Spread Criterion 3.10 36.4 Minor storm max. allowable capacity GOOD - greater than flow given on sheet 'Q-Peak' Major storm max. allowable capacity GOOD - greater than flow given on sheet 'Q-Peak'

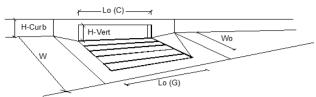
Project: 13-034.01 US 550 South Connection SEIS Alternative Analysis
Inlet ID: Basin AM-10, Inlet 83 Inlet 1021L



Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =	Directional C	Directional Cast Vane Grate	
Local Depression (additional to continuous gutter depression 'a' from 'Q-Allow')	a _{LOCAL} =	0.0	0.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	7
Length of a Single Unit Inlet (Grate or Curb Opening)	L _o =	4.00	4.00	ft
Width of a Unit Grate (cannot be greater than W from Q-Allow)	W _o =	2.00	2.00	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	C _f -G =	0.50	0.50	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	C_f - $C =$	N/A	N/A	
Street Hydraulics: OK - Q < maximum allowable from sheet 'Q-Allow'	_	MINOR	MAJOR	
Total Inlet Interception Capacity	Q =	0.53	0.88	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	Q _b =	0.00	0.06	cfs
Capture Percentage = Q _a /Q _o =	C% =	100	93	%

DESIGN PEAK FLOW FOR ONE-HALF OF STREET OR GRASS-LINED CHANNEL BY THE RATIONAL METHOD 13-034.01 US 550 South Connection SEIS Alternative Analysis Basin AM-10, Inlet 79 Inlet 1019RA Project: Inlet ID: OVERLAND SIDE OVERLAND FLOW FLOW Show Details GUTTER FLOW-GUTTER PLUS CARRYOVER FLOW -ROADWAY CENTERLINE Design Flow: ONLY if already determined through other methods: Minor Storm Major Storm 0.65 1.14 ILL IN THIS SECTION (local peak flow for 1/2 of street OR grass-lined channel): * If you enter values in Row 14, skip the rest of this sheet and proceed to sh Geographic Information: (Enter data in the blue cells): ILL IN THE SECTIONS Subcatchment Area = BELOW. Acres Percent Imperviousness = NRCS Soil Type = A, B, C, or D Site Type: Flows Developed For: Street Inlets Slope (ft/ft) Length (ft) Site is Non-Urban Orea Inlets in a Median Overland Flow : Channel Flow = Rainfall Information: Intensity I (inch/hr) = $C_1 * P_1 / (C_2 + T_c)$ Minor Storm Maior Storm Design Storm Return Period, T_r = vears Return Period One-Hour Precipitation, P₁ = inches C₁ = C₂ = User-Defined Storm Runoff Coefficient (leave this blank to accept a calculated value), C = User-Defined 5-yr. Runoff Coefficient (leave this blank to accept a calculated value), C_5 = Bypass (Carry-Over) Flow from upstream Subcatchments, Q_b = Total Design Peak Flow, Q = 0.65 1.14 cfs

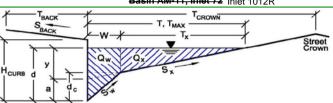
(Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)
13-034.01 US 550 South Connection SEIS Alternative Analysis
Basin AM-10, Inlet 79 Inlet 1019RA


Project: Inlet ID:

0.5	ft	
	ft/ft	
0.013]	
24.00	inches	
42.0	ft	
8.00	ft	
0.032	ft/ft	
0.032	ft/ft	
0.010	ft/ft	
0.013]	
Minor Storm	Major Storm	<u>. </u>
8.0	20.0	ft
6.0	12.0	inches
		check = yes
Minor Storm	Maior Storm	
3.46	40.7	cfs

 Project:
 13-034.01 US 550 South Connection SEIS Alternative Analysis

 Inlet ID:
 Basin AM-10, Inlet 79 Inlet 1019RA

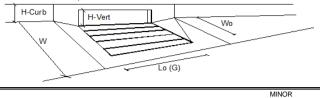


Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =	Directional Ca	Directional Cast Vane Grate	
Local Depression (additional to continuous gutter depression 'a' from 'Q-Allow')	a _{LOCAL} =	0.0	0.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	7
Length of a Single Unit Inlet (Grate or Curb Opening)	L _o =	4.00	4.00	ft
Width of a Unit Grate (cannot be greater than W from Q-Allow)	W _o =	2.00	2.00	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	C _f -G =	0.50	0.50	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	C_{f} - $C =$	N/A	N/A	
Street Hydraulics: OK - Q < maximum allowable from sheet 'Q-Allow'		MINOR	MAJOR	
Total Inlet Interception Capacity	Q =	0.65	0.98	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	Q _b =	0.00	0.16	cfs
Capture Percentage = Q _a /Q _o =	C% =	100	86	%

DESIGN PEAK FLOW FOR ONE-HALF OF STREET OR GRASS-LINED CHANNEL BY THE RATIONAL METHOD 13-034.01 US 550 South Connection SEIS Alternative Analysis Basin AM-11, Inlet 72 Inlet 1012R Project: Inlet ID: OVERLAND SIDE OVERLAND FLOW FLOW Show Details GUTTER FLOW-GUTTER PLUS CARRYOVER FLOW -ROADWAY CENTERLINE Design Flow: ONLY if already determined through other methods: Minor Storm Major Storm 0.59 1.03 ILL IN THIS SECTION (local peak flow for 1/2 of street OR grass-lined channel): * If you enter values in Row 14, skip the rest of this sheet and proceed to sh Geographic Information: (Enter data in the blue cells): ILL IN THE SECTIONS Subcatchment Area = BELOW. Acres Percent Imperviousness = NRCS Soil Type = A, B, C, or D Site Type: Flows Developed For: Street Inlets Slope (ft/ft) Length (ft) Site is Non-Urban Orea Inlets in a Median Overland Flow : Channel Flow = Rainfall Information: Intensity I (inch/hr) = $C_1 * P_1 / (C_2 + T_c)$ Minor Storm Maior Storm Design Storm Return Period, T_r = vears Return Period One-Hour Precipitation, P₁ = inches C₁ = C₂ = User-Defined Storm Runoff Coefficient (leave this blank to accept a calculated value), C = User-Defined 5-yr. Runoff Coefficient (leave this blank to accept a calculated value), C_5 = Bypass (Carry-Over) Flow from upstream Subcatchments, Q_b = Total Design Peak Flow, Q = 0.59 2.07 cfs

(Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)
13-034.01 US 550 South Connection SEIS Alternative Analysis
Basin AM-11, Inlet 72 Inlet 1012R

Project: Inlet ID:

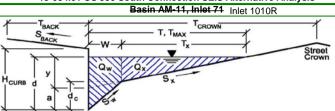


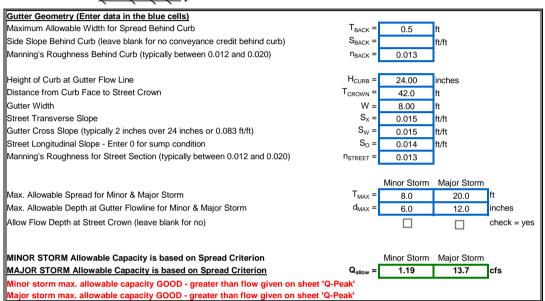
Gutter Geometry (Enter data in the blue cells)				
Maximum Allowable Width for Spread Behind Curb	T _{BACK} =	0.5	ft	
Side Slope Behind Curb (leave blank for no conveyance credit behind curb)	S _{BACK} =		ft/ft	
Manning's Roughness Behind Curb (typically between 0.012 and 0.020)	n _{BACK} =	0.013		
Height of Curb at Gutter Flow Line	H _{CURB} =	24.00	inches	
Distance from Curb Face to Street Crown	T _{CROWN} =	42.0	ft	
Gutter Width	W =	8.00	ft	
Street Transverse Slope	S _X =	0.033	ft/ft	
Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 ft/ft)	S _w =	0.033	ft/ft	
Street Longitudinal Slope - Enter 0 for sump condition	S _o =	0.022	ft/ft	
Manning's Roughness for Street Section (typically between 0.012 and 0.020)	n _{street} =	0.013		
	_	Minor Storm	Major Storm	_
Max. Allowable Spread for Minor & Major Storm	$T_{MAX} =$	8.0	20.0	ft
Max. Allowable Depth at Gutter Flowline for Minor & Major Storm	$d_{MAX} =$	6.0	12.0	inches
Allow Flow Depth at Street Crown (leave blank for no)				check = yes
		Maria	M O.	
MINOR STORM Allowable Capacity is based on Spread Criterion		Minor Storm	Major Storm	-
MAJOR STORM Allowable Capacity is based on Spread Criterion	$Q_{allow} =$	5.49	63.2	cfs
Minor storm max. allowable capacity GOOD - greater than flow given on shee				
Major storm max. allowable capacity GOOD - greater than flow given on shee	et 'Q-Peak'			

13-034.01 US 550 South Connection SEIS Alternative Analysis

Basin AM-11, Inlet 72 Inlet 1012R Project: Inlet ID:

> ⊬—Lo (C) — H-Curb H-Vert Wo


Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =	Directional Ca	Directional Cast Vane Grate	
Local Depression (additional to continuous gutter depression 'a' from 'Q-Allow')	a _{LOCAL} =	0.0	0.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	7
Length of a Single Unit Inlet (Grate or Curb Opening)	L _o =	4.00	4.00	ft
Width of a Unit Grate (cannot be greater than W from Q-Allow)	W _o =	2.00	2.00	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	C _f -G =	0.50	0.50	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	C _f -C =	N/A	N/A	
Street Hydraulics: OK - Q < maximum allowable from sheet 'Q-Allow'	_	MINOR	MAJOR	
Total Inlet Interception Capacity	Q =	-0.53	1.56	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	Q _b =	1.12	0.51	cfs
Capture Percentage = Q _a /Q _o =	C% =	-90	75	%


DESIGN PEAK FLOW FOR ONE-HALF OF STREET OR GRASS-LINED CHANNEL BY THE RATIONAL METHOD 13-034.01 US 550 South Connection SEIS Alternative Analysis Basin AM-11, Inlet 71 Inlet 1010R Project: Inlet ID: OVERLAND SIDE OVERLAND FLOW FLOW Show Details GUTTER FLOW-GUTTER PLUS CARRYOVER FLOW -ROADWAY CENTERLINE Design Flow: ONLY if already determined through other methods: Minor Storm Major Storm 0.54 0.95 ILL IN THIS SECTION (local peak flow for 1/2 of street OR grass-lined channel): * If you enter values in Row 14, skip the rest of this sheet and proceed to sh Geographic Information: (Enter data in the blue cells): ILL IN THE SECTIONS Subcatchment Area = BELOW. Acres Percent Imperviousness = NRCS Soil Type = A, B, C, or D Site Type: Flows Developed For: Street Inlets Slope (ft/ft) Length (ft) Site is Non-Urban Orea Inlets in a Median Overland Flow : Channel Flow = Rainfall Information: Intensity I (inch/hr) = $C_1 * P_1 / (C_2 + T_c)$ Minor Storm Maior Storm Design Storm Return Period, T_r = vears Return Period One-Hour Precipitation, P₁ = inches C₁ = C₂ = User-Defined Storm Runoff Coefficient (leave this blank to accept a calculated value), C = User-Defined 5-yr. Runoff Coefficient (leave this blank to accept a calculated value), C_5 = Bypass (Carry-Over) Flow from upstream Subcatchments, Q_b = Total Design Peak Flow, Q = 0.54 1.46 cfs

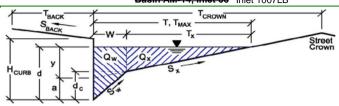
(Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)

13-034.01 US 550 South Connection SEIS Alternative Analysis

Project: Inlet ID:

 Project:
 13-034.01 US 550 South Connection SEIS Alternative Analysis

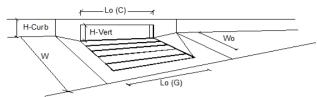
 Inlet ID:
 Basin AM-11, Inlet 71 Inlet 1010R


H-Curb H-Vert Wo

Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =	Directional Ca	Directional Cast Vane Grate	
Local Depression (additional to continuous gutter depression 'a' from 'Q-Allow')	a _{LOCAL} =	0.0	0.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	7
Length of a Single Unit Inlet (Grate or Curb Opening)	L _o =	4.00	4.00	ft
Width of a Unit Grate (cannot be greater than W from Q-Allow)	W _o =	2.00	2.00	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	C _f -G =	0.50	0.50	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	C_{f} - $C =$	N/A	N/A	
Street Hydraulics: OK - Q < maximum allowable from sheet 'Q-Allow'		MINOR	MAJOR	
Total Inlet Interception Capacity	Q =	0.37	0.67	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	Q _b =	0.17	0.79	cfs
Capture Percentage = Q _a /Q _o =	C% =	68	46	%

DESIGN PEAK FLOW FOR ONE-HALF OF STREET OR GRASS-LINED CHANNEL BY THE RATIONAL METHOD 13-034.01 US 550 South Connection SEIS Alternative Analysis Basin AM-14, Inlet 66 Inlet 1007LB Project: Inlet ID: OVERLAND SIDE OVERLAND FLOW FLOW Show Details GUTTER FLOW-GUTTER PLUS CARRYOVER FLOW -ROADWAY CENTERLINE Design Flow: ONLY if already determined through other methods: Minor Storm Major Storm 2.06 3.63 ILL IN THIS SECTION (local peak flow for 1/2 of street OR grass-lined channel): * If you enter values in Row 14, skip the rest of this sheet and proceed to sh Geographic Information: (Enter data in the blue cells): ILL IN THE SECTIONS Subcatchment Area = BELOW. Acres Percent Imperviousness = NRCS Soil Type = A, B, C, or D Site Type: Flows Developed For: Street Inlets Slope (ft/ft) Length (ft) Site is Non-Urban Orea Inlets in a Median Overland Flow : Channel Flow = Rainfall Information: Intensity I (inch/hr) = $C_1 * P_1 / (C_2 + T_c)$ Minor Storm Maior Storm Design Storm Return Period, T_r = vears Return Period One-Hour Precipitation, P₁ = inches C₁ = C₂ = User-Defined Storm Runoff Coefficient (leave this blank to accept a calculated value), C = User-Defined 5-yr. Runoff Coefficient (leave this blank to accept a calculated value), C_5 = Bypass (Carry-Over) Flow from upstream Subcatchments, Q_b = Total Design Peak Flow, Q = 2.06 3.63 cfs

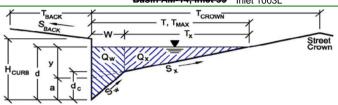
(Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)
13-034.01 US 550 South Connection SEIS Alternative Analysis
Basin AM-14, Inlet 66 Inlet 1007LB


Project: Inlet ID:

Gutter Geometry (Enter data in the blue cells)				
Maximum Allowable Width for Spread Behind Curb	T _{BACK} =	0.5	ft	
Side Slope Behind Curb (leave blank for no conveyance credit behind curb)	S _{BACK} =		ft/ft	
Manning's Roughness Behind Curb (typically between 0.012 and 0.020)	n _{BACK} =	0.013		
Height of Curb at Gutter Flow Line	H _{CURB} =	24.00	inches	
Distance from Curb Face to Street Crown	T _{CROWN} =	42.0	ft	
Gutter Width	W =	8.00	ft	
Street Transverse Slope	S _X =	0.010	ft/ft	
Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 ft/ft)	S _W =	0.010	ft/ft	
Street Longitudinal Slope - Enter 0 for sump condition	S _O =	0.000	ft/ft	
Manning's Roughness for Street Section (typically between 0.012 and 0.020)	n _{STREET} =	0.013		
		Minor Storm	Major Storm	<u>1</u>
Max. Allowable Spread for Minor & Major Storm	$T_{MAX} =$	8.0	20.0	ft
Max. Allowable Depth at Gutter Flowline for Minor & Major Storm	$d_{MAX} =$	6.0	12.0	inches
Allow Flow Depth at Street Crown (leave blank for no)				check = yes
MINOR STORM Allowable Capacity is based on Depth Criterion		Minor Storm	Major Storm	1
MAJOR STORM Allowable Capacity is based on Depth Criterion	Q _{allow} =	SUMP	SUMP	cfs
Minor storm max. allowable capacity GOOD - greater than flow given on shee				
Major storm max. allowable capacity GOOD - greater than flow given on shee				

 Project:
 13-034.01 US 550 South Connection SEIS Alternative Analysis

 Inlet ID:
 Basin AM-14, Inlet 66 Inlet 1007LB


Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =	Directional Ca	Directional Cast Vane Grate	
Local Depression (additional to continuous gutter depression 'a' from 'Q-Allow')	a _{LOCAL} =	0.0	0.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	T
Length of a Single Unit Inlet (Grate or Curb Opening)	L _o =	4.00	4.00	ft
Width of a Unit Grate (cannot be greater than W from Q-Allow)	W _o =	2.00	2.00	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	C _f -G =	0.50	0.50	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	C_{f} - $C =$	N/A	N/A	
Street Hydraulics: OK - Q < maximum allowable from sheet 'Q-Allow'		MINOR	MAJOR	
Total Inlet Interception Capacity	Q =	0.37	0.67	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	Q _b =	1.69	2.96	cfs
Capture Percentage = Q _a /Q _o =	C% =	18	18	%

DESIGN PEAK FLOW FOR ONE-HALF OF STREET OR GRASS-LINED CHANNEL BY THE RATIONAL METHOD 13-034.01 US 550 South Connection SEIS Alternative Analysis Basin AM-14, Inlet 59 Inlet 1003L Project: Inlet ID: OVERLAND SIDE OVERLAND FLOW FLOW Show Details GUTTER FLOW-GUTTER PLUS CARRYOVER FLOW -ROADWAY CENTERLINE Design Flow: ONLY if already determined through other methods: Minor Storm Major Storm 0.75 1.33 ILL IN THIS SECTION (local peak flow for 1/2 of street OR grass-lined channel): * If you enter values in Row 14, skip the rest of this sheet and proceed to sh Geographic Information: (Enter data in the blue cells): ILL IN THE SECTIONS Subcatchment Area = BELOW. Acres Percent Imperviousness = NRCS Soil Type = A, B, C, or D Site Type: Flows Developed For: Street Inlets Slope (ft/ft) Length (ft) Site is Non-Urban Orea Inlets in a Median Overland Flow : Channel Flow = Rainfall Information: Intensity I (inch/hr) = $C_1 * P_1 / (C_2 + T_c)$ Minor Storm Maior Storm Design Storm Return Period, T_r = vears Return Period One-Hour Precipitation, P₁ = inches C₁ = C₂ = User-Defined Storm Runoff Coefficient (leave this blank to accept a calculated value), C = User-Defined 5-yr. Runoff Coefficient (leave this blank to accept a calculated value), C_5 = Bypass (Carry-Over) Flow from upstream Subcatchments, Q_b = Total Design Peak Flow, Q = 0.75 1.33 cfs

(Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)

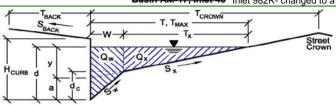
13-034.01 US 550 South Connection SEIS Alternative Analysis

Basin AM-14, Inlet 59 Inlet 1003L Project: Inlet ID:

Gutter Geometry (Enter data in the blue cells)				
Maximum Allowable Width for Spread Behind Curb	T _{BACK} =	0.5	ft	
Side Slope Behind Curb (leave blank for no conveyance credit behind curb)	S _{BACK} =		ft/ft	
Manning's Roughness Behind Curb (typically between 0.012 and 0.020)	n _{BACK} =	0.013		
Height of Curb at Gutter Flow Line	H _{CURB} =	24.00	inches	
Distance from Curb Face to Street Crown	T _{CROWN} =	42.0	ft	
Gutter Width	W =	8.00	ft	
Street Transverse Slope	S _X =	0.060	ft/ft	
Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 ft/ft)	S _W =	0.060	ft/ft	
Street Longitudinal Slope - Enter 0 for sump condition	S _O =	0.015	ft/ft	
Manning's Roughness for Street Section (typically between 0.012 and 0.020)	n _{STREET} =	0.013		
	_	Minor Storm	Major Storr	n_
Max. Allowable Spread for Minor & Major Storm	T _{MAX} =	8.0	20.0	ft
Max. Allowable Depth at Gutter Flowline for Minor & Major Storm	d _{MAX} =	6.0	12.0	inches
Allow Flow Depth at Street Crown (leave blank for no)	•			check = yes
MINOR STORM Allowable Capacity is based on Spread Criterion		Minor Storm	Major Storr	n
		WILLION SCOTT	iviajui Stuli	<u> </u>

13-034.01 US 550 South Connection SEIS Alternative Analysis

Basin AM-14, Inlet 59 Inlet 1003L Project: Inlet ID:


Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =	Directional Ca	ast Vane Grate	
Local Depression (additional to continuous gutter depression 'a' from 'Q-Allow')	a _{LOCAL} =	0.0	0.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	T
Length of a Single Unit Inlet (Grate or Curb Opening)	L _o =	4.00	4.00	ft
Width of a Unit Grate (cannot be greater than W from Q-Allow)	W _o =	2.00	2.00	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	C _f -G =	0.50	0.50	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	C_{f} - $C =$	N/A	N/A	
Street Hydraulics: OK - Q < maximum allowable from sheet 'Q-Allow'		MINOR	MAJOR	
Total Inlet Interception Capacity	Q =	-0.08	1.33	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	Q _b =	0.83	0.00	cfs
Capture Percentage = Q _a /Q _o =	C% =	-11	100	%

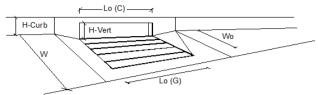
DESIGN PEAK FLOW FOR ONE-HALF OF STREET OR GRASS-LINED CHANNEL BY THE RATIONAL METHOD 13-034.01 US 550 South Connection SEIS Alternative Analysis Project: Basin AM-17, Inlet 40 Inlet 982R- changed to a Type C Inlet Inlet ID: OVERLAND SIDE OVERLAND FLOW FLOW Show Details GUTTER FLOW-GUTTER PLUS CARRYOVER FLOW -ROADWAY CENTERLINE Design Flow: ONLY if already determined through other methods: Minor Storm Major Storm 0.23 0.46 ILL IN THIS SECTION (local peak flow for 1/2 of street OR grass-lined channel): * If you enter values in Row 14, skip the rest of this sheet and proceed to sh Geographic Information: (Enter data in the blue cells): ILL IN THE SECTIONS Subcatchment Area = BELOW. Acres Percent Imperviousness = NRCS Soil Type = A, B, C, or D Site Type: Flows Developed For: Street Inlets Slope (ft/ft) Length (ft) Site is Non-Urban Orea Inlets in a Median Overland Flow : Channel Flow = Rainfall Information: Intensity I (inch/hr) = $C_1 * P_1 / (C_2 + T_c)$ Minor Storm Maior Storm Design Storm Return Period, T_r = vears Return Period One-Hour Precipitation, P₁ = inches C₁ = C₂ = User-Defined Storm Runoff Coefficient (leave this blank to accept a calculated value), C = User-Defined 5-yr. Runoff Coefficient (leave this blank to accept a calculated value), C_5 = Bypass (Carry-Over) Flow from upstream Subcatchments, Q_b = Total Design Peak Flow, Q = 0.23 0.46 cfs

(Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)

Project: Inlet ID: 13-034.01 US 550 South Connection SEIS Alternative Analysis

Basin AM-17, Inlet 40 Inlet 982R- changed to a Type C Inlet

Gutter Geometry (Enter data in the blue cells) Maximum Allowable Width for Spread Behind Curb $\mathsf{T}_{\mathsf{BACK}}$ Side Slope Behind Curb (leave blank for no conveyance credit behind curb) 0.000 ft/ft Manning's Roughness Behind Curb (typically between 0.012 and 0.020) 0.013 n_{BACK} = Height of Curb at Gutter Flow Line H_{CURB} = 11.00 inches Distance from Curb Face to Street Crown T_{CROWN} 35.0 Gutter Width W = 2.00 Street Transverse Slope S_x = 0.167 ft/ft Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 ft/ft) S_W = 0.042 ft/ft Street Longitudinal Slope - Enter 0 for sump condition S_o = 0.005 ft/ft Manning's Roughness for Street Section (typically between 0.012 and 0.020) 0.013 n_{STREET} = Minor Storm Major Storm Max. Allowable Spread for Minor & Major Storm 35.0 7.0 Max. Allowable Depth at Gutter Flowline for Minor & Major Storm 11.0 inches Allow Flow Depth at Street Crown (leave blank for no) check = yes MINOR STORM Allowable Capacity is based on Depth Criterion Minor Storm Major Storm MAJOR STORM Allowable Capacity is based on Depth Criterion 24.22 24.2 Minor storm max. allowable capacity GOOD - greater than flow given on sheet 'Q-Peak'


Major storm max. allowable capacity GOOD - greater than flow given on sheet 'Q-Peak'

Project:

Inlet ID:

13-034.01 US 550 South Connection SEIS Alternative Analysis

Basin AM-17, Inlet 40 Inlet 982R- changed to a Type C Inlet

Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =	CDOT/Denver	13 Valley Grate	
ocal Depression (additional to continuous gutter depression 'a' from 'Q-Allow')	a _{LOCAL} =	2.0	2.0	inches
otal Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	7
ength of a Single Unit Inlet (Grate or Curb Opening)	L _o =	3.00	3.00	ft
Nidth of a Unit Grate (cannot be greater than W from Q-Allow)	W _o =	1.73	1.73	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	C _f -G =	0.50	0.50	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	C _f -C =	N/A	N/A	
Street Hydraulics: OK - Q < maximum allowable from sheet 'Q-Allow'	_	MINOR	MAJOR	
Design Discharge for Half of Street (from Sheet Q-Peak)	$Q_o =$	0.2	0.5	cfs
Vater Spread Width	T =	2.3	2.5	ft
Vater Depth at Flowline (outside of local depression)	d =	1.7	1.9	inches
Vater Depth at Street Crown (or at T _{MAX})	d _{CROWN} =	0.0	0.0	inches
Ratio of Gutter Flow to Design Flow	E ₀ =	1.491	0.986	
Discharge outside the Gutter Section W, carried in Section T _x	$Q_x =$	0.0	0.0	cfs
Discharge within the Gutter Section W	$Q_w =$	0.3	0.5	cfs
Discharge Behind the Curb Face	Q _{BACK} =	0.0	0.0	cfs
flow Area within the Gutter Section W	A _W =	0.20	0.25	sq ft
/elocity within the Gutter Section W	V _W =	1.7	1.9	fps
Vater Depth for Design Condition	d _{LOCAL} =	3.7	3.9	inches
Grate Analysis (Calculated)		MINOR	MAJOR	
otal Length of Inlet Grate Opening	L=	3.00	3.00	ft
tatio of Grate Flow to Design Flow	E _{o-GRATE} =	0.925	0.904	
Inder No-Clogging Condition	_	MINOR	MAJOR	
Minimum Velocity Where Grate Splash-Over Begins	V _o =	1.56	1.56	fps
nterception Rate of Frontal Flow	$R_f =$	0.98	0.97	
nterception Rate of Side Flow	R _x =	0.84	0.81	
nterception Capacity	$Q_i =$	0.3	0.4	cfs
Inder Clogging Condition	_	MINOR	MAJOR	
Clogging Coefficient for Multiple-unit Grate Inlet	GrateCoef =	1.00	1.00	
Clogging Factor for Multiple-unit Grate Inlet	GrateClog =	0.50	0.50	
ffective (unclogged) Length of Multiple-unit Grate Inlet	L _e =	1.50	1.50	ft
Minimum Velocity Where Grate Splash-Over Begins	V _o =	0.89	0.89	fps
nterception Rate of Frontal Flow	$R_f =$	0.92	0.91	
nterception Rate of Side Flow	$R_x =$	0.51	0.47	
ctual Interception Capacity	Q _a =	0.2	0.4	cfs
Carry-Over Flow = Q _o -Q _a (to be applied to curb opening or next d/s inlet)	Q _b =	0.0	0.1	cfs
Curb or Slotted Inlet Opening Analysis (Calculated)	_	MINOR	MAJOR	
quivalent Slope S _e (based on grate carry-over)	S _e =	N/A	N/A	ft/ft
Required Length L _T to Have 100% Interception	$L_T =$	N/A	N/A	ft
Inder No-Clogging Condition	_	MINOR	MAJOR	_
ffective Length of Curb Opening or Slotted Inlet (minimum of L, L_T)	L =	N/A	N/A	ft
nterception Capacity	$Q_i =$	N/A	N/A	cfs
Inder Clogging Condition	_	MINOR	MAJOR	_
Clogging Coefficient	CurbCoef =	N/A	N/A	
Clogging Factor for Multiple-unit Curb Opening or Slotted Inlet	CurbClog =	N/A	N/A	
ffective (Unclogged) Length	L _e =	N/A	N/A	ft
Actual Interception Capacity	Q _a =	N/A	N/A	cfs
Carry-Over Flow = Q _{b(GRATE)} -Q _a	Q _b =	N/A	N/A	cfs
Summary		MINOR	MAJOR	
otal Inlet Interception Capacity	Q =	0.23	0.41	cfs
otal Inlet Carry-Over Flow (flow bypassing inlet)	Q _b =	0.00	0.05	cfs
Capture Percentage = Q _a /Q _o =	C% =	100	89	%

HEC 22 Inlet Interception Capacity for Uniform Cross Slope

Muller Engineering Company Date: 04/02/2014

Project Number: 13-034.01

Created by: KJG

Bridge Drains 93 & 92 Inlet 1032L &1032R

(-rate	Information

Width, W	1.94 ft	Width is perpendicular to flow direction
Length. L	1	Length is parallel to flow direction

8 ft

0.013

Street Geometry

Spreadwidth, T

Manning's coefficient, n

Cross slope, Sx	0.02	ft/ft	
Longitudinal Slope, S _L	0.0321	ft/ft	
Total Gutter Flow Rate, Q	2.89	cfs	(Equ 4-2)
Depth of flow, d	0.16	ft	(Equ 4-3)
Gutter Flow Velocity, V	4.48	ft/s	(Equ 4-13)
Frontal Flow:Gutter Flow, E_0	0.52		(Equ 4-4)
Initial Splash-over Velocity, Vo	5.95	ft/s	See Chart 5B

Inlet Efficiency

Efficiency Frontal		
Flow Intercepted:Total Flow, R _F	1.00	(Equ 4-18)
Efficiency Side		
Flow Intercepted:Total Flow, R _S	0.009	(Equ 4-19)
Grate Efficiency, E	0.53	(Equ 4-20)

Adjustment for Gutter Width

,		
Depressed Gutter Width	1.94	ft
Depressed Gutter Length	1	ft
Adjusted Grate Efficieny, E'	0.53	(Equ 4-20a

Interception Capacity, Q _i	1.53 cfs	(Equ 4-21)
---------------------------------------	----------	------------

Equations come from Fedral Highway Administraions HEC-22, Third Edition

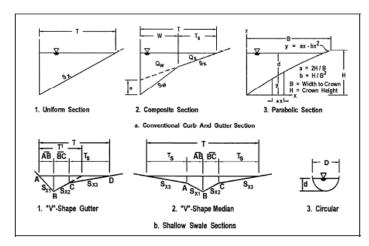


Figure 4-1. Typical gutter sections.

HEC 22 Inlet Interception Capacity for Uniform Cross Slope

Muller Engineering Company Date: 04/02/2014

Project Number: 13-034.01

Created by: KJG

Inlet ID: BD 27 & BD 28 Inlet 1014L &1014R

Grate Information

Width, W	1.94	ft	Width is perpendicular to flow direction
Length. L	1		Length is parallel to flow direction
Bridge Drains 75 & 74			

0.013

Street Geometry

Manning's coefficient, n

Spreadwidth, T	8	ft	
Cross slope, Sx	0.0225	ft/ft	
Longitudinal Slope, S _L	0.0321	ft/ft	
Total Gutter Flow Rate, Q	3.52	cfs	(Equ 4-2)
Depth of flow, d	0.18	ft	(Equ 4-3)
Gutter Flow Velocity, V	4.85	ft/s	(Equ 4-13)
Frontal Flow:Gutter Flow, E_0	0.52		(Equ 4-4)
Initial Splash-over Velocity, Vo	5.95	ft/s	See Chart 5B

Inlet Efficiency

Efficiency Frontal		
Flow Intercepted:Total Flow, R _F	1.00	(Equ 4-18)
Efficiency Side		
Flow Intercepted:Total Flow, R_{S}	0.009	(Equ 4-19)
Grate Efficiency, E	0.53	(Equ 4-20)

Adjustment for Gutter Width

Depressed Gutter Width	1.94	ft
Depressed Gutter Length	1	ft
Adjusted Grate Efficieny, E'	0.53	(Equ 4-20a)

Interception Capacity, Q _i	1.86	cfs	(Equ 4-21)
---------------------------------------	------	-----	------------

Equations come from Fedral Highway Administraions HEC-22, Third Edition

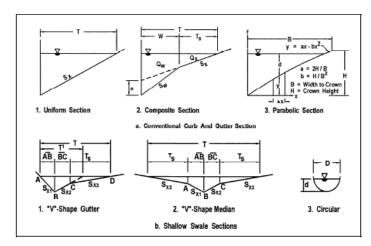


Figure 4-1. Typical gutter sections.